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or not utilities are discounted. In the discounted case, this condition takes the form that
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WITH OR WITHOUT DISCOUNTING: A UNIFIED VIEW*

Swapan Dasgupta
Tapan Mitra

1. INTRODUCTION

In the literature' on price chracterization of optimal paths in stationary models
of optimal growth, distinct "transversality conditions” have typically been
presented, depending on whether or not the future utilities are discounted. In the
discounted case, this condition typically takes the form that asymptotically the
present-value prices converge to zero. In the undiscounted case, however, it is of
the form that the present value prices are bounded above along the path®.

This note points out that under assumptions that are fairly standard in such
problems, this difference is superfluous and the same transversality condition
characterizes optimal paths in both the discounted and undiscounted cases. This
result is accomplished by showing that in the discounted case, the apparently
weaker form of the limit condition (namely, the present-value prices are bounded)
actually implies the stronger form (the present-value prices converge to zero).

2. THE FRAMEWORK

Consider a reduce-form model of optimal growth of the Ramsey type,
described by a triplet (%, u, 8), where & is a transition possibility set in |." x
%", with typical element (x, x’), which describes the terminal stocks(x") that can

* Estudios de Economfa, publicacién del Departamento de Economia de la Facultad de Ciencias Econdmicas y
Administrativas de la Universidad de Chile, vol. 21, n" 2, diciembre de 1994.

! See, for instance, Gale (1967), McKenzie (1986), Weitzman (1973) for the reduced form model, and Peleg
(1974), and Peleg and Ryder (1972) for a framework in which consumption is treated explicitly.

* This, together with the existence of a price supported stationary program satisfying a "strict value-loss
property”, is used to establish the optimality of a competitive path in the undiscounted case (see, for instance,
Theorem 9 of Gale (1967), and Theorem 10.2 of Peleg (1974)).
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be technologically attained (in one period) from the initial stocks(x); u is the utility
function from & to |W; and & satisfyingo < 6 = 1 denotes the discount factor.®

Ap_ﬂhfmmxisasequmce{x,} satisfying (x,, X,.,) € ¥ fort = 0, and x, <
x. A path {x;} &omxiscaliedmmhixﬁifthereisapricesequence{p,},wiﬂi

p, in R," for t = 0, such that the following "support property” is satisfied for each
t=0.

8" u(x,x%,,) +Pl+lxlﬁl_pl426'm’x’)+pﬂle -px Jfor all (xxNe§ (1)
A path {x} from x is called optimal if for every path {x.’} from x, we have

T
i {nf 30 8 [ % - uw(x/, .01 2 0 @

In the undiscounted case (6 = 1), this is the "catching-up criterion” of Gale
(1967); in the_discounted case (6 < 1),where typically the discounted utility sums
are well-defined, this is equivalent to

):: 8 u (x5 X2 $ dutx!, xL) 3

The following assumptions on the transition possibility set and the utility
function will be used:

(A.1) Foreacha > 0, there is § > 0, such that (x,x") ¢ & and |x| = o imply
|x’| = B, and u(x,x’) < 6. :

(A.2) There is a number 7y such that (x,x”) € & and |x| =7 imply |x’| <
Ix|.

(A.3) Thereis (x, y) in & satisfyingy » x = 0 (S is productive).

’ Hﬂ:,!,‘ﬂmﬂumguiwoﬂhmlnfm'. For x in %®®, x = 0 means x; 2 0 means x; = for each i
-I.”.,n:.x}ﬂmmxaﬂlui:#ﬂ::hﬂmxi}'ﬂfurmhi. The norm of x is defined by |x|

ol
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(A.4) (0,0)is in & (possibility of inaction).

3. AN EXAMPLE

The general model described above is very convenient because it can be
applied to a variety of contexts in which a problem of dynamic optimization arises.
To fix ideas, we provide below a typical example which will ilustrate the concepts
defined, the assumptions used, and the theorem proved, in a specific context. This
is a version of the one-sector model of Neoclassical growth theory (as discussed,
for instance, in Lucas (1988) sketched in its simplest form. In keeping with the
present context, we adopt a discrete-time formulation of the problem as in
Dorfman, Samuelson and Solow (1958) or Koopmans (1957).

There is one produced good which can be used both as a consumption good
and as a capital good in production. Let k, denote the stock of capital input used
in producing the output y, in period t, and c, the consumption in period t. Since
output is distributed over consumption (c), net investment (k.,, - k), and
depreciation (y k, , assuming a constant depreciation rate 0 < 9 < 1),

=+ k,-kt+t 9 k for eacht = 0 )

No distinction is made between population and labor, which along with capital
is an input in production. Taking the simplest case, let the quantity of labor
available be exogenously given at a level which is fixed over time. So, even
though strictly speaking the production function has two arguments, labor and
capital, we may suppress the former and simply write it as f(k), where the function
f maps from R, to R,. It is understood that the marginal product of capital is
positive, decreases to 0 as k becomes very large, and increases to infinity as k
becomes very small. A typical example of a production function with these
features is the well-know Cobb-Douglas function, k* L, wherea > 0, b > 0, and
a+b = 1. Here, taking L to be fixed and equal to 1(by appropriate choice of units
in which labor is measured), f(k) = k".

A path from k is a non-negative sequence of capital, output and consumption
{k., y., ¢} satisfying (4) and

y.=f(k) fort =0 (5)
where k is the initial (historically given) capital stock. It will be convenient to

write, combining (4) and (5), that a feasible path is a non-negative sequence {k,,
¢} satisfying
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f)+(-mDk=0c+ksy ©)

Let w(c) denote the welfare function, so that w(c) is the welfare from
consumption in period t. Itis understood that w exhibits positive and diminishing
marginal utility. A standard example of a welfare function having these features
is the iso-elastic function: w(c) = ¢, with0 < 6 < 1.

Preferences over feasible paths are given by comparing the (discounted) sum
of welfares along paths, using a discount factor, 0<déd=sLl

In the case where 8 < 1, the discounted welfare sums along paths are finite,
and a straightforward comparison can be made to obtain the suitable notion of
optimality: a path {k, ¢} is optimal if for every path {k’, ¢’} from k;, we have

i_j 3 wie) = $ 8'w(c,) )

If, however, future generations’ welfares are given equal weights in the
objective function (6 = 1), the welfare sums typically will not be finite. The usual
method of comparison is some form of the overtaking criterion, pioneered by von
Weizsacker (1965), which involves comparing welfare sums over arbitrary finite
horizons. A path is optimal, loosely speaking, if there in no other path which
provides a significantly larger welfare sum for every large (but finite) horizon.
Formally, a path {k, , ¢} is optimal if for every path {k’ , ¢’} from ko, we have

T T
%jﬂf@ﬁcj-gﬁcﬁlkﬂ ®

So, we may conveniently write, regardless of which case is being dealt with,
that a path {k, , ¢} is optimal if for every path {k’ , ¢’} from ko , we have

lim inf [)rj a'w(c;-f; 3 wc)]120
i bed® : ©)

It is easy to see that the above example is a special case of the general model
described in Section 2. In the example, the number of goods, n, equals 1. The
capital stock k can be identified with the stock x in the general model. Denote by
¢ the set {(x, x):x =0,and 0 < x* < f(x) + (1 -9) x}. For any path {k ,
¢}, the sequence {x;} = {k} satisfies (X, , X,,,) € & for each t = 0, by using (6).
Define the utility function over & by u(x, x’) = w(f (x) + (1 - 7)x - x”). Then,
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it is clear that w(c) along a path {k, , ¢} is the same as u(x, , X,,,) along the
corresponding path {x,} in the general model, and so the notion of optimality as
expressed in (9) is the same as that described in (2).

We now comment briefly on the assumptions (a.1) - (A.4) in the context of
our example. Assumption (A.1) says that from limited inputs one can get only
limited output and limited utility. The value of B (the bound on output and utility)
is, of course, not a constant but will typically depend on the value of « (the bound
on input). For instance, in our example, (A.1) is satisfied with 8 equal to the
maximum of the two numbers [f(a) + (1 - ) o] and w(f(e) + (1 - 7) ).
Assumption (A.2) says that there is enough diminishing returns so that beyond a
certain level, stocks cannot be expanded. In our example, the marginal product of
capital goes to zero when the capital stock becomes very large, and there is a
positive rate of depreciation, so the average product of capital is less than 1 for
large capital stocks, and (A.2) is satisfied . Assumption (A.3) makes the model
interesting from the economic standpoint in the sense that there are some initial
stocks from which expansion is possible, and so positive consumption can be
sustained. In the example, the average product of capital is larger than 1 if the
capital stock is small enough, and so (A.3) is satisfied. Finally, (A.4) simply
states that it is possible to use no input, and thereby produce no output, which is
hardly a restriction at all. It is satisfied in our example since f maps from R, to
R..

Finally, we briefly interpret the theorem of this paper (see the section below)
in the context of the example. It may be verified that in this context the
competitive conditions (that is, inequality (1) above) say that the price p,., of
output at the end of each period t, is the discounted marginal utility of
consumption, 8 w’ (c). Moreover, at these prices, the present value profit in
each period (that is, the value of output produced together with that of stocks left
over after depreciation, net of costs of inputs employed at the beginning of the
period, p.., [f(k) + A-mkl-pk)is maximized along a competitive path.
Existing results in the literature say that such a competitive path which satisfies a
transversality condition is optimal. The transversality condition cited is different,
however, depending on whether it is the undiscounted case or the discounted case
under consideration. In the former case, the condition usually cited reads "the
present value of capital, p, k, , is bounded above", while in the latter it reads "the
present value of capital, p, k, , converges to zero" (see the Proposition in the section
below). The theorem of the present paper asserts that the transversality condition
in the undiscounted case (namely, "the present value of capital, p, k, , is bounded
above") works in the discounted case as well.  Consequently, a single
characterization of optimality applies, in principle, to both the discounted and the
undiscounted cases.
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4. A UNIFYING TRANSVERSALITY CONDITION

We turn, now, to the result of the paper mentioned in the introductory
section. Recall from that discussion that what we want to establish is that, in the
discounted case, if a competitive path has bounded present value prices then it is
optimal®. Thus, for the rest of this section, it will be understood that the discount
factor satisfies 0 < 6 < 1.

We note a couple of preliminary results, before coming to the statement and
proof of our main theorem. These results are well-known and are, therefore,
stated without proofs. First, it follows from assumptions (A.1) and (A.2) that the
stock levels and the utility levels obtained along any path starting from a given
initial stock are uniformly bounded above by a number which depends only on the
given initial stock.

Lemma; Under (A.1) and (A.2), given any initial stock x, there is a number B
(depending only on x) such that for any path {x,} from x, |x] < B, and u(x, ,
X..1) < Bforeacht = 0.

Second, we state formally the usual form of the sufficiency side of the price
characterization of optimal paths in the discounted case.

Proposition: Under (A.1) and (A.2), if {x,} is a competitive path from x, with
associated supporting prices {p,}, and lim p, x, = 0, then {x,} is optimal from x.
g

Remarks: (i) We can replace the condition Iim p, x, = 0 in the statement of the
-
Proposition by the condition lim inf p, x, = 0. (ii) A change of origin of the

f=
utility function leaves essentials unaffected. So, from now on, we take the utility
function to be normalized so that u (0,0) = 0.

Theorem: Under (A.1) - (A.4), if {x} is a competitive path from x, with
associated supporting prices {p,}, and lim inf p, x, < oo, then {x,} is optimal from

Proof: Define the sequence {w} by

w, = 8 ux,, X, * Py Xy ~ P % Jor 120 (10)

. Hmhtmlummhnmwhhlh:Eceuh:ﬁdenfmnpﬁ:nchrmrhlﬂmnfnpﬁnulmm
wﬂhimmunﬁimdpiMmmmlﬂnﬁtﬁmwhumvemmymﬁﬂm
m“lhwdlkmwnhmnliunmmmduquimmiubhcmnumnlu-mlhnmdﬂ.
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Using (A.4) and Remark (ii), we can apply (1) to (x,x”) = (0,0) foreacht =
0 to get

w, = 0 fort =2 0 1)
We now break up the proof by stating and proving two claims.
Claim 1: If w,—~ 0 as t - oo, then {x,} is optimal.
To establish Claim 1, suppose on the contrary that w,— 0 as t— oo, but {x} is not
optimal. By the Proposition and Remark (i), wecan find p > Oand T2 0 such
that p, x, = p fort = T. Byusinglhel,ema,xtisboulﬂadabove,mdmwe
cand find v > 0, such that
lpd = v fort =T (2

Using (A.3), (12) and p, = 0, if follows that there is a number m > 0, such
that p( - £ =2 m forallt = T, and so

p,j‘zp,.i‘+mzm:-ﬂ Jor =T (13

Applying (1) to &, fort = 0, wegetw, 8 u®,¥ *p., 3 -pfor
t = 0, by using (10). Then, using (13), we have for t = T

p,,,ljsp,f-*\i’,-ﬁ'u(.f,j’}sp,_?—m*—w‘-a‘m’,t,j} (19

Since x, - 0 and &' u(®, §)~0 as ==, and m > 0, we can find S = T, such
that '

w,—ﬁ’ﬂ,j}-ms—(m{2} fort =S 15

Using (14) and (15), we have p,.s 9 - P9 s - (m2) forallt = S, and so
for every N > S, we obtain

N
E[P,q?‘_l’.ﬂﬂ-{m){”-ﬁ (16

=5

Simplifying the sum on the left-hand side of (16), we obtain for every N
> S.
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-pPs¥ s @x-P)J <= (m2) N -5 an

Since (m/2) (N-S) = o0 as N—= o0, (17)leads to a contradiction, completing
the proof of Claim 1.

Claim 2: lim inf p, x, < = implies that lim in f w, = 0.
== faum

To establish Claim 2, note that by using (10) we can get for each T 2 0,

T T

gw,-g 8" ulx, , X,,;) * Pry Xo1 ~ Po %o s

Since we know that lim in fp, x, < =, we can use (18), the Lemma and 0 <
(=1
5 < 1toget

T T
lininff Y w,slimsuf [; b'n(.t,,;m]]limlnff Pra Xy <= (9
--.n ==l —

Using (11), we have w, = 0 for t = 0, so (19) implies that ; w, is
convergent, and so w, —~ 0 as t = oo, establishing Claim 2. Clearly, Claims 1 and
2 together prove the theorem.

Given the boundedness property of the Lemma, it is clear that if the price
sequence {p,} (associated with the competitive path {x} is bounded, then the
asymptotic condition of the Theorem is satisfied. this observation yields the
following useful corollary.

Corollary: Under (A.1) - (A.4), if {x} is a competitive path from x, with
associated supporting prices {p,}, and lim in f |p] < then {x} is optimal from
]

X.
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